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Multipole field representations
The general formula for multipole potential is
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where n =1 is for dipole, n = 2 for quadrupole, and so on. The skew multipole potential can be
written as:
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The use of n! in the denominator ensures that this representation is consistent with multi-pole

field definition use in MAD program. The expressions iﬁl) and éﬁl) should be understood
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as the strength of corresponding multipole field. The B,, B, A, A, used in equation (2) and
later are to be interpreted as fields measured at a coordinate (x,y).

Dipole

The dipole potential in Cartesian coordinate is quite simple, following equation (1a) with n = 1:
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The resulting magnetic fields are exactly that of a horizontal dipole:
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Skew dipole

This is just a fancier name for vertical bending dipole. Its potential can be written down
according to equation (1b) as:
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And the magnetic fields are:
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Quadrupole
The quadrupole potential in Cartesian coordinate can be written as:
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From this we derive the magnetic field:
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Skew quadrupole:
The skew quadrupole potential in Cartesian coordinate can be written as:
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From this we derive the magnetic field:
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Sextupole

The sextupole potential, n = 3, in Cartesian coordinate can be written as:
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From this we derive the magnetic field:
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Skew sextupole
The skew sextupole potential, n = 3, in Cartesian coordinate can be written as:
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From this we derive the magnetic field:
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Octupole
The octupole potential, n =4, in Cartesian coordinate can be written as:
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From this we derive the magnetic field:
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Skew octupole
The skew octupole potential, n =4, in Cartesian coordinate can be written as:
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From this we derive the magnetic field:
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Decapole
The decapole potential, n =5, in Cartesian coordinate can be written as:
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From this we derive the magnetic field:
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Skew decapole:
The skew decapole potential, n =5, in Cartesian coordinate can be written as:
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Rolled multipoles
Rolling the multipole by an angle +¢ such that

0=0+¢
and following equation (1) the vector potential of the n-th multipole can be written as:
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In the original frame of reference this will be:
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Given respective normal and skew components equation (6) can also be used in reverse to
figure out the equivalent roll angle of a multipole field.



Flipped-around multipoles

Normal multipole reversal

When a multipole magnet is used in reverse, i.e. when beam is approaching in the opposite
direction, the angular variable 0 is replaced with 7 -6 in equation (1a). The vector potential of
the n-th multipole can be written down as:
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Therefore dipole, sextupole, and decapole, with n = odd, will not change sign. On the other
hand quadrupole and octupole, with n = even, will change sign.

Skew multipole reversal

Replacing 0 with 7t - 6 in equation (1b), the vector potential of the n-th skew multipole can be
written down as:
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Therefore, skew quadrupole and skew octupole, with n = even, will not change sign. Skew
dipole, skew sextupole, and skew decapole, on the other hand, are with n = odd and will need
to change sign.

About the only reason one would ever try to switch direction is to do calculation in both
proton and anti-proton direction. Since anti-protons are with negative charge an overall sign
change is expected, one way or the other.



